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ABSTRACT
Circular RNAs (circRNAs) are widely expressed in animal cells, but their biogenesis and functions are poorly
understood. CircRNAs have been shown to act as sponges for miRNAs and may also potentially sponge
RNA-binding proteins (RBPs) and are thus predicted to function as robust posttranscriptional regulators of
gene expression. The joint analysis of large-scale transcriptome data coupled with computational analyses
represents a powerful approach to elucidate possible biological roles of ribonucleoprotein (RNP)
complexes. Here, we present a new web tool, CircInteractome (circRNA interactome), for mapping RBP-
and miRNA-binding sites on human circRNAs. CircInteractome searches public circRNA, miRNA, and RBP
databases to provide bioinformatic analyses of binding sites on circRNAs and additionally analyzes miRNA
and RBP sites on junction and junction-flanking sequences. CircInteractome also allows the user the ability
to (1) identify potential circRNAs which can act as RBP sponges, (2) design junction-spanning primers for
specific detection of circRNAs of interest, (3) design siRNAs for circRNA silencing, and (4) identify potential
internal ribosomal entry sites (IRES). In sum, the web tool CircInteractome, freely accessible at http://
circinteractome.nia.nih.gov, facilitates the analysis of circRNAs and circRNP biology.
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Introduction

Circular RNAs (circRNAs) are widely expressed RNAs lacking
50 and 30 ends, forming instead covalently closed RNA loops. In
eukaryotes, circRNAs arise most often through backsplicing, a
process in which the 5' and 3' ends of a spliced RNA are cova-
lently linked to form a closed RNA molecule that contains exon
and/or intron sequences.1-3 Although a few examples of circR-
NAs have been known for several decades, only with the recent
widespread use of high-throughput RNA sequencing and bioin-
formatics have we learned that circRNAs constitute a vast class
of stable RNAs expressed endogenously in cells, often with tis-
sue-specific patterns.1-5 The functional roles of circRNAs are
not as well established as those of other noncoding (nc)RNAs
such as microRNAs (miRNAs). However, one prominent
mechanism whereby circRNAs are believed to function is by
sponging miRNAs, sequestering them away from protein-cod-
ing mRNAs.2 It has also been postulated that circRNAs could
serve as sponges for RNA-binding proteins (RBPs), platforms
for assembly of RBPs, and protein-coding templates for
translation.6

RBPs control all stages of post-transcriptional gene expres-
sion, including the splicing, export, turnover, translation, and
localization of mRNAs.7-9 By modulating gene expression,
RBPs play key roles in virtually all cellular processes – prolifera-
tion, differentiation, motility, senescence, apoptosis, as well as

the cellular responses to stresses, mitogens, and immune trig-
gers.10,11 Consequently, RBPs have been implicated in a wide
range of human diseases such as cancer, muscle pathologies,
and neurodegenerative conditions.12-16 Recent developments in
the analysis in RNA-protein (RNP) interactions using cross-
linking techniques such as CLIP (cross-linking immunoprecipi-
tation), PAR-CLIP (photoactivatable-ribonucleoside-enhanced
CLIP), HITS-CLIP (high-throughput sequencing CLIP), and
iCLIP (individual-nucleotide-resolution CLIP) have identified
with unprecedented precision the binding sequences of RBPs
on target RNAs.17-20

MicroRNAs (miRNAs) comprise another major class of
posttranscriptional regulators. They bind thousands of human
transcripts through partial complementarity and generally
reduce their expression by suppressing mRNA translation and/
or stability.21-23 In some cases miRNAs may enhance mRNA
translation.24,25 MicroRNAs are initially synthesized as primary
(Pri)-microRNA transcripts, which are processed by the micro-
processor complex into microRNA precursors (Pre)-micro-
RNAs.26-29 Pre-microRNAs are then exported to the cytoplasm
where they are further processed by DICER1 and loaded onto
the RNA-inducible silencing complex (RISC) to be directed to
target mRNAs.28-31

RBPsandmiRNAscanbind the samemRNAinavarietyof func-
tional manners; for example, they can compete, cooperate, or bind
sequentially to a given mRNA.32-34 Such corregulatory effects by
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RBPs and miRNAs influence physiologic processes as well as dis-
ease.35,36Thus, it is importanttounderstandindetail theirinteraction
withmRNAs.Severaldatabasesareavailablewhichfacilitateresearch
on RBPs (e.g., starBase) and miRNAs (e.g., TargetScan) interacting
withspecificmRNAs.Here,wehavedevelopedanewcomputational
resource named ‘CircInteractome’ which enables researchers to
searchsystematicallyforpossibleinteractionsofcircRNAswithRBPs
and miRNAs. This tool will greatly facilitate the identification of
circRNAs that can sponge miRNAs and/or RBPs and will enhance
the search for circRNAswith potential function as platforms for the
assemblyofRBPs.Additionalfeaturessuchastheabilitytodisplaythe
mRNA counterpart and the genomic and mature sequences of the
circRNA, as well as the ability to design specific circRNA divergent
primersandcircRNA-directedsiRNAs,areaimedat furtherfacilitat-
ingotheraspectsofcircRNAresearch.TheCircInteractometoolcur-
rently searches againstHomosapiensdatabasesbutwill be expanded
toincludeotherspeciesinthefuture.

Results and discussion

CircRNA-wide mapping of RBPs and RBP ‘super-sponges’

Published CLIP datasets do not specify if the RBP binding sites are
present in linear or circular RNAs (unless the CLIP hit spans a
junctional sequence). Thus, we utilized CLIP datasets as indicated
in the workflow (Fig. 1) to create a comprehensive binding map of
RBPs to circRNAs (Fig. 2). We integrated 93 independently
reported CLIP datasets from various RBPs (Table S1) obtained
from different tissues and cell lines.37 Computational analyses
revealed that for select RBPs there were large numbers of binding
sites in circRNA sequences (Table S2); for instance, we identified
~117,000 circRNAs that could potentially associate with the RBP
EIF4A3 (Fig. S1A). Analysis of other RBPs using CircInteractome
indicated that they could also potentially interact with numerous
circRNAs (Fig. S1A). For example, the mature circRNA hsa_-
circ_0000020 hosts multiple binding sites for several RBPs like
HuR (6 sites) and FMRP (10 sites) (Fig. 2A, B). Thus, we hypothe-
sized that circRNAs with relatively high density of binding sites for
any single RBP could potentially act as a ‘sponge’ or a ‘decoy’ for
that RBP. This sponging function would be enhanced by the long
half-lives of circRNAs. By extension, circRNAs with exceptionally
high density of binding sites for a given RBP might be considered
to be ‘super-sponges’; for example, hsa_circ_0024707 (428 nt long)
could function as a super-sponge for AGO2, since AGO2 can
potentially bind this relatively short circRNA at 85 predicted posi-
tions (Table S2). In sum, this tool facilitates the search for potential
RBPs interacting with circRNAs, and can identify possible RBP
sponges as indicated in Figure 2 and Figure S3.

RBPs on circRNA junctions

RBPs may also interact with circRNA junctions and play a role in
circRNA splicing, processing, folding, stabilization, and localization. To
test this possibility, we queried CircInteractome for possibly binding sites
for RBPs at select sequences spanning 100 nt upstream and downstream
from the junction site (Fig. 2B). Computational analysis of theRBPbind-
ing sites from various datasets (Table S1) revealed that RBPsmay indeed
interact with circRNA junctions. For instance, EIF4A3 targets junction
sequences with much higher frequency than the frequency seen for

targeting the body of mature circRNAs (Fig. S1B). This suggests that
EIF4A3 could have a preference for binding to circRNA junctions com-
pared to other RBPs (Fig. S1B). An example of this type of search for
hsa_circ_0000020 is shown inFigure 2B andFigure S4A.

Mapping binding sites of RBPs on pre-circRNA

The splicing machinery can generate circRNAs through non-
linear back-splicing, which joins 50 and 30 ends covalently to
make a circRNA.38 Splicing events are tightly regulated by
RBPs and snRNAs binding near the splice sites.39 Thus, we
used CircInteractome to search all datasets (Table S1) in order
to identify the binding sites of RBPs in the flanking sequences
upstream and downstream of the mature circRNA. For
instance, the flanking sequences on both sides of the hsa_-
circ_0000020 junction indicated 4 binding sites for EIF4A3
(Fig. 2C, bottom; Fig. S4B), suggesting a possible role for
EIF4A3 in the biogenesis of hsa_circ_0000020. Our analysis
also uncovered a relatively higher frequency of putative binding
sites for splicing factors like TDP43 at the flanking sequences of
circRNAs, which point to a possible role for these RBPs in
circRNA splicing/biogenesis (Fig. S1C).

Potential circRNA translation though IRES

CircRNAs are believed to not be translated. While most circR-
NAs do not appear to be associated with polyribosomes, the
possibility exists that some circRNAs might be translated into
protein products.3 In this regard, linear long noncoding (lnc)
RNAs are not generally translated into proteins, but a subset of
them appear to be a source of functional small or micropeptides
due to the presence of short open reading frames (ORFs).40 For
example, a micropeptide encoded by a noncoding RNA was
recently found to regulate muscle performance.41 In addition,
the viral circRNA CCC (covalently closed circular, 220 nt long)
was recently found to be fully translated into a 16-kDa highly
basic protein in infected rice plants.42 Bioinformatic analysis
revealed the presence of IRES (internal ribosome entry sites)
and sites for RBPs that regulate IRES-mediated translation
(IRES trans-acting factors or ITAFs) in several circRNA
sequences (Table S3).43 For example, we found that hsa_-
circ_0041407 contains an IRES (underlined sequence) and par-
tial coding sequences of MAX network transcriptional
repressor (MNT; Fig. 3A, B) and postulated that hsa_-
circ_0041407 could give rise to a small chimeric protein of
»31 kDa (highlighted sequence, Fig. 3B). To our surprise, IRES
regions of circRNAs are predicted sites for many RBPs, includ-
ing HuR and PTB, 2 proteins reported to modulate IRES-
driven translation.43 Together, these findings suggest that
circRNAs could be translated through IRES sequences, and
thus IRES-bearing circRNAs detected in association with poly-
somes warrant future exploration.

miRNA ‘super-sponge’ circRNAs

The main function described for circRNAs thus far in the liter-
ature is that of miRNA sponges, as shown for the circRNA
ciRS-7, which has multiple binding sites for miR-7.5 To
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characterize miRNA-circRNA interactions (Fig. 4, Fig. S5), we
incorporated into CircInteractome the ability to search using
the TargetScan algorithm, which predicts miRNAs that target
circRNA by surveying for 7-mer or 8-mer complementarity to
the seed region as well as the 30 end of each miRNA.46 A survey
of miRNA target sites in circRNAs revealed the presence of

numerous target sites for a specific miRNA. In cases of excep-
tionally high hit numbers, a circRNA could be considered a
‘super-sponge’ for microRNAs. Strikingly, over 3,000 circRNAs
were found to have at least 20 miRNA target sites in a single
circRNA, and most of them had AGO2 binding sites
(Table S4). For example, hsa_circ_0139850, which is only

Figure 1. Workflow of the web tool Circular RNA Interactome or ‘CircInteractome’.
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437 nt long, has 22 sites for miR-7 and thus might act a super-
sponge for miR-7 (Fig. 4). The general finding that circRNAs
often have more miRNA target sites than those predicted by
chance lends further support to the idea that binding micro-
RNAs could be one of the key functions of circRNAs.

Divergent primer design

Designing specific primers for quantification of circRNA using
qPCR amplification can be challenging and prone to errors,
since the mature circRNA sequences after splicing are not read-
ily available in many cases and the primers must be divergent
and must span the junction. At present, there is no software or
web server that enables direct design of divergent primers

specific to circRNAs. Thus, we incorporated primer design
tools into CircInteractome (Primer345 or NCBI primer design
tool) and used as template the sequence around the circRNA
junction to ensure that the circRNA was amplified specifically
by reverse transcription (RT) followed by real-time quantitative
(q)PCR analysis (Fig. 5A). To illustrate this feature of CircIn-
teractome, we show the design of divergent primers at the junc-
tion sequence of hsa_circ_0000020 (Fig. 5B; Fig. S6A,B).

siRNA design

Designing siRNAs selectively directed at circRNAs is
challenging due to the limited knowledge of the junc-
tional sequences and the lack of appropriate software

Figure 2. View of CircInteractome input and output pages. A. Example the ‘Circular RNA’ page exhibiting the input parameters needed for a CircInteractome run. B.
Screenshot of ‘Circular RNA search’ for has_circ_0000020, showing RBPs binding in different regions of this circRNA. C. Schematic representation of the potential binding
sites of different RBPs to mature and pre-hsa_circ_0000020.
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tools to help design them. Thus, we incorporated into
CircInteractome the ability to generate 21-nt siRNAs tar-
geting junctional sequences spanning 5–16 nt on either
side of the junction. Using standard siRNA design crite-
ria, we filtered junctional sequences to find the best
siRNA target sequence46,47; users need to avoid siRNAs
with long stretches rich in G/C, and confirm using
BLAST that the siRNAs are specific. For better silencing
effects, the output siRNAs may be ordered with an addi-
tional 2 nucleotides (dTdT) as 30 DNA overhangs
(Fig. S7). Users may then purchase them from any
source; links to forms to complete siRNA orders using
IDT or Dharmacon are provided. Examples of the 10 best
possible siRNA target sequences for hsa_circ_0000020 are
shown (Fig. 6). In short, CircInteractome can be used to
predict siRNA sequences targeting the circRNA junctions.

Conclusions and future directions

This freely available web service can facilitate the study of cir-
cular RNAs and their interactions with other binding factors,
mainly RBPs and miRNAs. CircInteractome provides research-
ers with valuable detail about circular RNAs and their possible

role in sequestering RBPs and/or miRNAs and thereby reduc-
ing their availability for mRNAs. CircInteractome also facili-
tates the design of primers for studying circRNA by RT-qPCR
analysis. CircInteractome can be used to predict RBP binding
to upstream and downstream sequences of the pre-spliced tran-
script, thus potentially shedding light into the biogenesis of
circRNAs. The interaction of translation regulators (miRNAs,
RBPs, ITAFs) and the presence of IRESs in circRNAs can help
to decipher whether circRNAs have protein/peptide-coding
capabilities.

CircInteractome incorporates several features from
other freely available web resources, such as circBase,
StareBase 2.0, TargetScan 7.0, and Primer3. By integrating
these resources, CircInteractome enables the user to find
out the genomic and mature circRNA sequences (Fig. S2),
circRNA-binding partners (RBPs, miRNAs), siRNAs, and
primers to study circRNA levels, localization, and
function.

Although CircInteractome has many user-friendly features
for circRNA researchers, it is limited in its ability to predict
RBP and miRNA interactions when circRNAs form secondary
or tertiary structures. Given that all of the data provided here
are predicted based on sequence matches and the presence of

Figure 3. Predicted IRES possibly mediating circRNA translation. A. Schematic representation of hsa_circ_0041407, which contains the MNT 36-160 IRES that may
potentially drive translation. B. The sequence of hsa_circ_0041407 highlighted can potentially be translated via the IRES underlined.
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secondary or tertiary structures in circRNA cannot be consid-
ered systematically, experimental validation is essential to verify
RBP and miRNA functional sites.

We plan to maintain, update and curate CircInterac-
tome in the foreseeable future, and will include additional
RBPs, microRNAs, and circRNAs as they become avail-
able. Since RBP and miRNA sites may be masked or
revealed depending on whether the RNA is single- or
double-stranded, we will also include information on sec-
ondary structure as it is reported. In addition, experimen-
tal validation of circRNAs interacting with RBPs and
microRNAs will also be included in CircInteractome. We
will also integrate circRNAs from other species such as
mouse and monkey, and will include predictions of RNA
hybrids including circRNA:mRNA and circRNA:lncRNA.
Collectively, this resource will accelerate our efforts to
understand the roles of circRNAs in biological processes
relevant to health and disease.

Methods

Acquisition of circular RNA sequences

CircBase (http://www.circbase.org) is a public database that was
developed to gather unified datasets of circRNA IDs, genomic
coordinates and best transcripts.48 The mature sequences of all
of the reported circRNAs were downloaded from the UCSC
browser mirror (http://genome.mdc-berlin.de) at the Max-
Delbr€uck-Centrum f€ur Molekulare Medizin (MDC), Berlin,
Germany.49A complete list of all human circRNAs used in this
study is available in the CircInteractome website. We also
retrieved 1000 bp upstream and downstream of circRNA from
the UCSC genome browser mirror as circRNA flanking regions.
We used 100 nucleotides from the circRNA 30 and joined them
to 100 nucleotides at the 50 to identify the junctional sequence.
For circRNAs shorter than 200 nt, we divided the RNA
sequence in to two equal halves and the first half was joined at
the 30 of the second half to generate the template for primer

Figure 4. Potential miRNA-circRNA interactions. For a given circRNA ID entered, the miRNAs potentially targeting that circRNA are identified.
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design (Fig. 5A). This dataset was used for sequence alignment
with RBP binding sites.

Acquisition of binding sites of RBPs on circRNAs

Datasets including the binding sites of 35 RBPs (Table S1) iden-
tified by PAR-CLIP, HITS-CLIP, or iCLIP were retrieved from
starBase v2.0 (http://starbase.sysu.edu.cn/),37 UCSC browser,
and published datasets. A complete list of all datasets used in
the study is shown in Table S2. Data were previously analyzed
and thus we used these datasets for our analysis without modi-
fication. The sequences for the RBP CLIP clusters were down-
loaded from the UCSC browser mirror (http://genome.mdc-
berlin.de)49 and were analyzed against circRNA mature, flank-
ing, and junction sequences of circRNAs with 95% sequence

homology and maximum of 2 mismatches to find their binding
sites (Fig. 1). When more than one tag was predicted at the
same site for an RBP, only one tag was considered as the bind-
ing sequence.

IRES dataset

The sequences of reported IRES were downloaded from the
IRESite (http://iresite.org/), which contains information about
experimentally validated IRES sequences.50 These IRES sequen-
ces were analyzed against mature circRNA sequences to find
out the presence of IRES in circRNAs; 99% similarity between
the IRES sequence and the mature circRNA sequence was
allowed (Fig. 1). IRES sequences present in circRNAs were fur-
ther analyzed against the RBP CLIP cluster sequences to

Figure 5. CircRNA primer design. A. Schematic representation of the design of divergent primers for circRNA detection by RT-qPCR analysis. B. Input webpage for diver-
gent primer design. C. Screenshot of the output page showing the junction sequence of circRNA and links of primer design tools (Primer3 and NCBI).
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identify binding sites of different RBPs in the IRES sequences of
circRNAs (Fig. 1).

miRNA Target ciRNAs

Mature sequences of circRNAs were used in the TargetScan
Perl Script to predict the miRNAs which have sequence com-
plementarity with circRNA.44 The complete miRNA list and
sequences were taken from the microRNA database (http://
www.mirbase.org/).51

Divergent primer design

The circRNA junction sequences were retrieved from the
mature circRNA sequences and exported to primer design tools
(Primer3 or NCBI) to give maximum of 5 sets of primer pairs
for PCR products of sizes ranging from 120–200 bp and span-
ning the junction (Fig. S6A, B). For circRNAs smaller than
200 nt, users are given a choice for the length of PCR amplicon
based on circRNA length.

CircRNA siRNA design

siRNAs spanning circRNA junction were designed using crite-
ria for 21-nt siRNAs described previously.46,47 To design the
21-nt siRNA target sequence spanning the junction, we used a
minimum of 5 nt on either side of the junction.

Availability

The database is freely accessible through the web server at
http://circinteractome.nia.nih.gov.
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